Tn916-generated, lipooligosaccharide mutants of Neisseria meningitidis and Neisseria gonorrhoeae.
نویسندگان
چکیده
A library of Tn916-generated, tetracycline-resistant (Tc) mutants of the group B Neisseri meningitidis strain NMB was screened by using monoclonal antibodies (MAbs) that recognize structural differences in neisserial lipooligosaccharide (LOS). The LOS of parental strain NMB had a relative molecular mass of 4.5 kDa, reacted with MAbs 3F11 and 6B4 but not with MAb 4C4 or 6E4, and contained a lacto-N-neotetrose unit. Two phenotypically stable mutants, SS3 and R6, altered in LOS, were identified by colony immunoblots, electrophoresis, and Western immunoblots. The LOS of mutant SS3 was 3.4 kDa and reacted with MAbs 4C4 and 6E4 but not MAb 3E11 or 6B4. The LOS of mutant R6 was 3.1 to 3.2 kDa and reacted with MAb 6E4 but not MAb 3F11, 6B4, or 4C4. Thus, the LOSs of the R6 and SS3 mutants were predicted to contain different truncations of the core oligosaccharide. The LOS phenotype of each mutant was linked to Tc(r), as determined by transformation of the parent strain with DNA from the mutant. Southern hybridizations and single-specific-primer PCR revealed in each mutant a single truncated tn916 insertion which had lost genes required for mobilization. Tn916 mutagenesis was used to identify two distinct genetic sites in the meningococcal chromosome involved in biosynthesis of the oligosaccharide chain of LOS and to create genetically defined LOS mutants of N. meningitidis and Neisseria gonorrhoeae.
منابع مشابه
The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection go...
متن کاملDetection of the lst gene in different serogroups and LOS immunotypes of Neisseria meningitidis.
The sialylation of the lipooligosaccharide (LOS) of Neisseria meningitidis is mediated by the LOS sialyltransferase enzyme encoded by the lst gene. PCR using four sets of primers that targeted to different regions of the lst gene was used to survey the distribution of lst in different serogroups and LOS immunotypes of N. meningitidis as well as other Neisseria species. While the lst gene was fo...
متن کاملActivation of toll-like receptor 2 (TLR2) and TLR4/MD2 by Neisseria is independent of capsule and lipooligosaccharide (LOS) sialylation but varies widely among LOS from different strains.
Lipooligosaccharide (LOS) structure and capsular polysaccharide of Neisseria meningitidis each greatly influence the virulence of the organism and the quality of host innate immune responses. In this study, we found that production of the proinflammatory cytokine tumor necrosis factor (TNF) by a human monocyte-derived cell line (THP-1) exposed to strains of N. meningitidis lacking capsule and/o...
متن کاملα-2,3-Sialyltransferase Expression Level Impacts the Kinetics of Lipooligosaccharide Sialylation, Complement Resistance, and the Ability of Neisseria gonorrhoeae to Colonize the Murine Genital Tract
UNLABELLED Neisseria meningitidis and Neisseria gonorrhoeae modify the terminal lacto-N-neotetraose moiety of their lipooligosaccharide (LOS) with sialic acid. N. gonorrhoeae LOS sialylation blocks killing by complement, which is mediated at least in part by enhanced binding of the complement inhibitor factor H (FH). The role of LOS sialylation in resistance of N. meningitidis to serum killing ...
متن کاملPhosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum.
The capacity of Neisseria gonorrhoeae to cause disseminated gonococcal infection requires that such strains resist the bactericidal action of normal human serum. The bactericidal action of normal human serum against N. gonorrhoeae is mediated by the classical complement pathway through an antibody-dependent mechanism. The mechanism(s) by which certain strains of gonococci resist normal human se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 62 7 شماره
صفحات -
تاریخ انتشار 1994